题目内容
【题目】如图,正方形ABCD中,E在BC上,BE=2,CE=1.点P在BD上,则PE与PC的和的最小值为 .
【答案】
【解析】解:连接AC、AE,
∵四边形ABCD是正方形,
∴A、C关于直线BD对称,
∴AE的长即为PE+PC的最小值,
∵BE=2,CE=1,
∴BC=AB=2+1=3,
在Rt△ABE中,
∵AE= = = ,
∴PE与PC的和的最小值为 .
所以答案是: .
【考点精析】关于本题考查的正方形的性质和轴对称-最短路线问题,需要了解正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形;已知起点结点,求最短路径;与确定起点相反,已知终点结点,求最短路径;已知起点和终点,求两结点之间的最短路径;求图中所有最短路径才能得出正确答案.
练习册系列答案
相关题目