题目内容
【题目】如图,三角形纸片中,AB=8cm,BC=6cm,AC=5cm.沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,求△ADE的周长.
【答案】解:∵BC沿BD折叠点C落在AB边上的点E处,
∴DE=CD,BE=BC,
∵AB=8cm,BC=6cm,
∴AE=AB﹣BE=AB﹣BC=8﹣6=2cm,
∴△ADE的周长=AD+DE+AE,
=AD+CD+AE,
=AC+AE,
=5+2,
=7cm.
【解析】根据翻折变换的性质可得DE=CD,BE=BC,然后求出AE,再根据三角形的周长列式求解即可.
【考点精析】根据题目的已知条件,利用翻折变换(折叠问题)的相关知识可以得到问题的答案,需要掌握折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等.
练习册系列答案
相关题目
【题目】为了深化课程改革,省实验积极开展校本课程建设,计划成立“增量阅读”、“趣味数学”、“音乐舞蹈”和“戏剧英语”等多个社团,要求每位学生都自主选择其中一个社团,为此,随机调查了初中部分学生选择社团的意向.并将调查结果绘制成如下统计图表(不完整):
选择意向 | 增量阅读 | 趣味数学 | 音乐舞蹈 | 戏曲英语 | 其他 |
所占百分比 | a | 20% | b | 10% | 5% |
根据统计图表的信息,解答下列问题:
(l)求本次抽样调查的学生总人数及a、b的值:
(2)将条形统计图补充完整;
(3)若该校共有5000名学生,试估计全校选择“音乐舞蹈”社团的学生人数.