题目内容
【题目】问题发现:(1)如图1,在等腰直角三角形中,,点为的中点,点为上一点,将射线顺时针旋转交于点,则与的数量关系为____;
问题探究:(2)如图2,在等腰三角形中,,点为的中点,点为上一点,将射线顺时针旋转交于点,则与的数量关系是否改变,请说明理由;
问题解决:(3)如图3,点为正方形对角线的交点,点为的中点,点为直线上一点,将射线顺时针旋转交直线于点,若,当面积为时,直接写出线段的长.
【答案】(1)OM=ON;(2)不改变;证明见解析;(3)线段BN的长为或
【解析】
(1)连接,OC,证明△AOM≌△CON(ASA)可得结论.
(2)数量关系不变.如图2中,过点O作OK⊥AC于K,OJ⊥BC于J,连接OC.证明△OKM≌△OJN(AAS)可得结论.
(3)如图3中,过点P作PG⊥AB于G,PH⊥BC于H.证明△MOC≌△NOB(SAS),推出CM=BN,设CM=BN=m,根据S△PMN==S△PBM+S△BMN-S△PBN,构建方程求解即可.当点M在CB的延长线上时,同法可求.
解:(1)如图1中,结论:OM=ON.
理由:连接OC.
∵CA=CB,∠ACB=90°,AO=OB,
∴CO=OA=OB,OC⊥AB,∠A=∠B=45°,∠BCO=∠ACO=45°
∴∠AOC=∠MON=90°,
∴∠AOM=∠CON,
∵∠A=∠CON,
∴△AOM≌△CON(ASA),
∴OM=ON.
故答案为:OM=ON.
(2)理由:如图2中,过点O作OK⊥AC于K,OJ⊥BC于J,连接OC.
∵∠ACB=120°,∠OKC=∠OJC=90°,
∴∠KOJ=60°=∠MON,
∴∠MKO=∠NOJ,
∵CA=CB,OA=OB,
∴OC平分∠ACB,
∵OK⊥CA,OJ⊥CB,
∴OK=OJ,
∵∠OKM=∠OJN=90°,
∴△OKM≌△OJN(AAS),
∴OM=ON.
(3)如图3中,过点P作PG⊥AB于G,PH⊥BC于H.
∵四边形ABCD是正方形,
∴AB=AD=4,∠BAD=90°,
∴BD=AB=4,
∴OD=OB=2,PD=OP=,
∴PB=3,
∵四边形PGBH是正方形,
∴PG=PH=3,
∵∠MON=∠COB=90°,
∴∠MOC=∠NOB,
∵OM=ON,OC=OB,
∴△MOC≌△NOB(SAS),
∴CM=BN,设CM=BN=m,
∵S△PMN==S△PBM+S△BMN-S△PBN,
∴(4+m)3+m(4+m)m3=,
∴整理得:m2+4m-13=0,
解得m=或(舍去),
∴BN=.
当点M在CB的延长线上时,同法可得BN=.
综上所述,满足条件的BN的值为或.