题目内容

【题目】如图,已知DEF分别是等边△ABC的边ABBCAC上的点,且DE⊥BCEF⊥ACFD⊥AB,则下列结论不成立的是(  )

A.△DEF是等边三角形

B.△ADF≌△BED≌△CFE

C.DE=AB

D.SABC=3SDEF

【答案】C

【解析】

求出∠BDE=∠FEC=∠AFD=30°,求出∠DEF=∠DFE=∠EDF=60°,推出DF=DE=EF,即可得出等边三角形DEF,根据全等三角形性质推出三个三角形全等即可.求出AB=3BEDE=BE,即可判断选项C.根据相似三角形的面积比等于相似比的平方即可判断选项D

∵△ABC是等边三角形,

∴AB=AC=BC∠B=∠C=∠A=60°

∵DE⊥BCEF⊥ACFD⊥AB

∴∠DEB=∠EFC=∠FDA=90°

∴∠BDE=∠FEC=∠AFD=30°

∴∠DEF=∠DFE=∠EDF=180°90°30°=60°

∴DF=DE=EF

∴△DEF是等边三角形,

△ADF△BED△CFE

∴△ADF≌△BED≌△CFE

∴AD=BE=CF

∵∠DEB=90°∠BDE=30°

∴BD=2BEDE=BE

∴AB=3BE

DE=AB

DE=AB错误;

∵△ABC△DEF是等边三角形,

∴△ABC∽△DEF

∴SABCSDEF=AB2:(DE2=DE2DE2=3

即只有选项C错误;选项ABD正确.

故选C

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网