题目内容
【题目】如图1,已知直线y=kx与抛物线y=交于点A(3,6).
(1)求直线y=kx的解析式和线段OA的长度;
(2)点P为抛物线第一象限内的动点,过点P作直线PM,交x轴于点M(点M、O不重合),交直线OA于点Q,再过点Q作直线PM的垂线,交y轴于点N.试探究:线段QM与线段QN的长度之比是否为定值?如果是,求出这个定值;如果不是,说明理由;
(3)如图2,若点B为抛物线上对称轴右侧的点,点E在线段OA上(与点O、A不重合),点D(m,0)是x轴正半轴上的动点,且满足∠BAE=∠BED=∠AOD.继续探究:m在什么范围时,符合条件的E点的个数分别是1个、2个?
【答案】(1)y=2x,OA=,
(2)是一个定值,,
(3)当时,E点只有1个,当时,E点有2个。
【解析】(1)把点A(3,6)代入y=kx 得;
∵6=3k,
∴k=2,
∴y=2x.
OA=.
(2)是一个定值,理由如下:
如答图1,过点Q作QG⊥y轴于点G,QH⊥x轴于点H.
①当QH与QM重合时,显然QG与QN重合,
此时;
②当QH与QM不重合时,
∵QN⊥QM,QG⊥QH
不妨设点H,G分别在x、y轴的正半轴上,
∴∠MQH=∠GQN,
又∵∠QHM=∠QGN=90°
∴△QHM∽△QGN…(5分),
∴,
当点P、Q在抛物线和直线上不同位置时,同理可得.①①
如答图2,延长AB交x轴于点F,过点F作FC⊥OA于点C,过点A作AR⊥x轴于点R
∵∠AOD=∠BAE,
∴AF=OF,
∴OC=AC=OA=
∵∠ARO=∠FCO=90°,∠AOR=∠FOC,
∴△AOR∽△FOC,
∴,
∴OF=,
∴点F(,0),
设点B(x,),
过点B作BK⊥AR于点K,则△AKB∽△ARF,
∴,
即,
解得x1=6,x2=3(舍去),
∴点B(6,2),
∴BK=6﹣3=3,AK=6﹣2=4,
∴AB=5
(求AB也可采用下面的方法)
设直线AF为y=kx+b(k≠0)把点A(3,6),点F(,0)代入得
k=,b=10,
∴,
∴,
∴(舍去),,
∴B(6,2),
∴AB=5
在△ABE与△OED中
∵∠BAE=∠BED,
∴∠ABE+∠AEB=∠DEO+∠AEB,
∴∠ABE=∠DEO,
∵∠BAE=∠EOD,
∴△ABE∽△OED.
设OE=x,则AE=﹣x (),
由△ABE∽△OED得,
∴
∴()
∴顶点为(,)
如答图3,
当时,OE=x=,此时E点有1个;
当时,任取一个m的值都对应着两个x值,此时E点有2个.
∴当时,E点只有1个
当时,E点有2个