题目内容
【题目】完成下面推理过程:
如图,已知DE∥BC,DF、BE分别平分∠ADE、∠ABC,可推得∠FDE=∠DEB的理由:
∵DE∥BC(已知)
∴∠ADE= ( )
∵DF、BE分别平分∠ADE、∠ABC,
∴∠ADF= ( )
∠ABE= ( )
∴∠ADF=∠ABE
∴ ∥ ( )
∴∠FDE=∠DEB.( )
【答案】∠ABC,两直线平行,同位角相等;∠ADE,∠ABC,角平分线的定义;DF,BE,同位角相等,两直线平行;两直线平行,内错角相等
【解析】
根据平行线的性质由DE∥BC得∠ADE=∠ABC,再根据角平分线的定义得到∠ADF=∠ADE,∠ABE=∠ABC,则∠ADF=∠ABE,然后根据平行线的判定得到
DF∥BE,最后利用平行线的性质得∠FDE=∠DEB.
∵DE∥BC,
∴∠ADE=∠ABC,
∵DF、BE分别平分∠ADE、∠ABC,
∴∠ADF=∠ADE,
∠ABE=∠ABC,
∴∠ADF=∠ABE,
∴DF∥BE,
∴∠FDE=∠DEB.
故答案为∠ABC,两直线平行,同位角相等;∠ADE,∠ABC,角平分线的定义;DF,BE,同位角相等,两直线平行;两直线平行,内错角相等.
练习册系列答案
相关题目