题目内容
【题目】在RT△ABC中,∠C=90°,BC=3cm,AC=4cm,以点C为圆心,以2.5cm为半径画圆,则⊙C与直线AB的位置关系是( )
A.相交
B.相切
C.相离
D.不能确定
【答案】A
【解析】解:过C作CD⊥AB于D,如图所示:
∵在Rt△ABC中,∠C=90,AC=4,BC=3,
∴AB= =5,∵△ABC的面积= AC×BC= AB×CD,
∴3×4=5CD,
∴CD=2.4<2.5,
即d<r,
∴以2.5为半径的⊙C与直线AB的关系是相交;
故选A.
【考点精析】解答此题的关键在于理解直线与圆的三种位置关系的相关知识,掌握直线与圆有三种位置关系:无公共点为相离;有两个公共点为相交,这条直线叫做圆的割线;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点.
练习册系列答案
相关题目