题目内容

【题目】如图,△ABC中,AB=AC,∠BAC=90°,点D是直线AB上的一动点(不和A、B重合),BE⊥CD于E,交直线AC于F.

(1)点D在边AB上时,证明:AB=FA+BD;

(2)点D在AB的延长线或反向延长线上时,(1)中的结论是否成立?若不成立,请画出图形并直接写出正确结论.

【答案】(1)证明见解析;(2)见解析.

【解析】

(1)易证∠FBA=FCE,结合条件容易证到FAB≌△DAC,从而有FA=DA,就可得到AB=AD+BD=FA+BD.
(2)由于点D的位置在变化,因此线段AF、BD、AB之间的大小关系也会相应地发生变化,只需画出图象并借鉴(1)中的证明思路就可解决问题.

(1)如图1,∵BE⊥CD,即∠BEC=90°,∠BAC=90°,

∴∠F+∠FBA=90°,∠F+∠FCE=90°.

∴∠FBA=∠FCE.

∵∠FAB=180°-∠DAC=90°,

∴∠FAB=∠DAC.

∵AB=AC,

∴△FAB≌△DAC.

∴FA=DA.

∴AB=AD+BD=FA+BD.

(2)如图2,当D在AB延长线上时,AF=AB+BD,

理由是:同理得:△FAB≌△DAC,

∴AF=AD=AB+BD;

如图3,当D在AB反向延长线上时,BD=AB+AF,

理由是:同理得:△FAB≌△DAC,

∴AF=AD,

∴BD=AB+AD=AB+AF.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网