题目内容
【题目】如图,直线与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为( )
A.(﹣3,0) B.(﹣6,0) C.(,0) D.(,0)
【答案】C.
【解析】
试题分析:作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.
令中x=0,则y=4,∴点B的坐标为(0,4);
令中y=0,则,解得:x=﹣6,∴点A的坐标为(﹣6,0).
∵点C、D分别为线段AB、OB的中点,∴点C(﹣3,2),点D(0,2).
∵点D′和点D关于x轴对称,∴点D′的坐标为(0,﹣2).
设直线CD′的解析式为y=kx+b,∵直线CD′过点C(﹣3,2),D′(0,﹣2),∴有,解得:,∴直线CD′的解析式为.
令中y=0,则,解得:x=,∴点P的坐标为(,0).
故选C.
练习册系列答案
相关题目