题目内容

【题目】课本拓展

旧知新意:

我们容易证明,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?

1.尝试探究:

1如图1,DBC与ECB分别为ABC的两个外角,试探究A与DBC+ECB之间存在怎样的数量关系?为什么?

2.初步应用:

2如图2,在ABC纸片中剪去CED,得到四边形ABDE,1=130°,则2-C=

3小明联想到了曾经解决的一个问题:如图3,在ABC中,BP、CP分别平分外角DBC、ECB,P与A有何数量关系?请利用上面的结论直接写出答案

3拓展提升:

4如图4,在四边形ABCD中,BP、CP分别平分外角EBC、FCB,P与A、D有何数量关系?为什么?若需要利用上面的结论说明,可直接使用,不需说明理由

【答案】1DBC+ECB=180°+A;250°3P=90°-A;4BAD+CDA=360°-2P.

【解析】

试题分析:1根据三角形的一个外角等于与它不相邻的两个内角的和表示出DBC+ECB,再利用三角形内角和定理整理即可得解;

2根据1的结论整理计算即可得解;

3表示出DBC+ECB,再根据角平分线的定义求出PBC+PCB,然后利用三角形内角和定理列式整理即可得解;

4延长BA、CD相交于点Q,先用Q表示出P,再用1的结论整理即可得解.

试题解析:1DBC+ECB

=180°-ABC+180°-ACB

=360°-ABC+ACB

=360°-180°-A

=180°+A;

2∵∠1+2=180°+C,

130°+2=180°+C,

∴∠2-C=50°

3DBC+ECB=180°+A,

BP、CP分别平分外角DBC、ECB,

∴∠PBC+PCB=DBC+ECB=180°+A

PBC中,P=180°-180°+A=90°-A;

P=90°-A;

4延长BA、CD于Q,

P=90°-Q,

∴∠Q=180°-2P,

∴∠BAD+CDA=180°+Q,

=180°+180°-2P,

=360°-2P.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网