题目内容
【题目】如图,在平面直角坐标系中,等边三角形ABC的顶点B与原点O重合,点C在x轴上,点C坐标为(6,0),等边三角形ABC的三边上有三个动点D、E、F(不考虑与A、B、C重合),点D从A向B运动,点E从B向C运动,点F从C向A运动,三点同时运动,到终点结束,且速度均为1cm/s,设运动的时间为ts,解答下列问题:
(1)求证:如图①,不论t如何变化,△DEF始终为等边三角形.
(2)如图②过点E作EQ∥AB,交AC于点Q,设△AEQ的面积为S,求S与t的函数关系式及t为何值时△AEQ的面积最大?求出这个最大值.
(3)在(2)的条件下,当△AEQ的面积最大时,平面内是否存在一点P,使A、D、Q、P构成的四边形是菱形,若存在请直接写出P坐标,若不存在请说明理由?
【答案】(1)证明见解析;(2)当t=3时,△AEQ的面积最大为cm2;(3)(3,0)或(6,3)或(0,3)
【解析】
(1)由三角形ABC为等边三角形,以及AD=BE=CF,进而得出三角形ADF与三角形CFE与三角形BED全等,利用全等三角形对应边相等得到BF=DF=DE,即可得证;(2)先表示出三角形AEC面积,根据EQ与AB平行,得到三角形CEQ与三角形ABC相似,利用相似三角形面积比等于相似比的平方表示出三角形CEQ面积,进而表示出AEQ面积,利用二次函数的性质求出面积最大值,并求出此时Q的坐标即可;(3)当△AEQ的面积最大时,D、E、F都是中点,分两种情形讨论即 可解决问题;
(1)如图①中,
∵C(6,0),
∴BC=6
在等边三角形ABC中,AB=BC=AC=6,∠A=∠B=∠C=60°,
由题意知,当0<t<6时,AD=BE=CF=t,
∴BD=CE=AF=6﹣t,
∴△ADF≌△CFE≌△BED(SAS),
∴EF=DF=DE,
∴△DEF是等边三角形,
∴不论t如何变化,△DEF始终为等边三角形;
(2)如图②中,作AH⊥BC于H,则AH=ABsin60°=3,
∴S△AEC=×3×(6﹣t)=,
∵EQ∥AB,
∴△CEQ∽△ABC,
∴=()2=,即S△CEQ=S△ABC=×9=,
∴S△AEQ=S△AEC﹣S△CEQ=﹣=﹣(t﹣3)2+,
∵a=﹣<0,
∴抛物线开口向下,有最大值,
∴当t=3时,△AEQ的面积最大为cm2,
(3)如图③中,由(2)知,E点为BC的中点,线段EQ为△ABC的中位线,
当AD为菱形的边时,可得P1(3,0),P3(6,3),
当AD为对角线时,P2(0,3),
综上所述,满足条件的点P坐标为(3,0)或(6,3)或(0,3).