题目内容
如图,
是
的角平分线, 延长
交
的外接圆
于点
,过
三点的圆
交
的延长线于点
,连结
.
(1)求证:
∽
;
(2) 若
, 求
的长;
(3) 若
∥
, 试判断
的形状,并说明理由.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408230211354936265.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823021134994385.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823021135025544.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823021134994385.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823021135025544.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823021135275292.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823021135290318.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823021135306536.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823021135322321.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823021135337401.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823021135353302.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823021135368532.png)
(1)求证:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823021135384543.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823021135400539.png)
(2) 若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823021135415706.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823021135431386.png)
(3) 若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823021135446396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823021135462396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823021135478543.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408230211354936265.png)
(1)证明:连结两圆的相交弦![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823021135509414.png)
在圆
中,
,
在圆
中,
,
∴
,
又因为
是
角平分线,得∠BAE=∠CAE,
∴
,
∵
,
∴
∽
.
(2)∵
∽
,
∴
,
∴
,
∴
.
(3)证明:根据同弧上的圆周角相等,
得到:
,
,
∴
,
∵
=180°,
∴
=180°,
又
=180,
∴
.
∵
∥
,
,
又∵
,
∴∠AEB =∠ABE ,
∴
为等腰三角形.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823021135509414.png)
在圆
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823021135322321.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823021135556712.png)
在圆
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823021135275292.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823021135587751.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823021135602726.png)
又因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823021135618410.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823021135634520.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823021135649746.png)
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823021135665701.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823021135384543.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823021135400539.png)
(2)∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823021135384543.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823021135400539.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823021135743770.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408230211357581134.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823021135774570.png)
(3)证明:根据同弧上的圆周角相等,
得到:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823021135805717.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823021135821705.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823021135836875.png)
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823021135852806.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823021135868705.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823021135883690.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823021135899747.png)
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823021135446396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823021135462396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823021135930720.png)
又∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823021135946723.png)
∴∠AEB =∠ABE ,
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823021135478543.png)
(1)可通过证两组对应角相等来证两三角形相似.
(2)根据(1)中得出的相似三角形即可得出AE,DE,EF这三条线段的比例关系,有了AD,DE的长,即可求出EF的值.
(3)可通过证角的关系来得出三角形的形状.
(2)根据(1)中得出的相似三角形即可得出AE,DE,EF这三条线段的比例关系,有了AD,DE的长,即可求出EF的值.
(3)可通过证角的关系来得出三角形的形状.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目