题目内容

【题目】在平面直角坐标系中,先将抛物线y2x24x关于y轴作轴对称变换,再将所得的抛物线,绕它的顶点旋转180°,那么经两次变换后所得的新抛物线的函数表达式为(  )

A.y=﹣2x4xB.y=﹣2x+4x

C.y=﹣2x4x4D.y=﹣2x+4x+4

【答案】C

【解析】

若抛物线关于y轴作轴对称变换,则图象上所有的点纵坐标不变横坐标互为相反数;将其绕顶点旋转180°后,开口大小和顶点坐标都没有变化,变化的只是开口方向,可据此得出所求的结论.

解:抛物线y2x24x关于y轴作轴对称变换,

所得抛物线为y2(﹣x24(﹣x)=2x2+4x

y2x2+4x2x+122

∴绕顶点旋转180°后,得:y=﹣2x+122=﹣2x24x4

故选:C

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网