题目内容
【题目】如图 ,直角梯形 ABCD 中, AD ∥ BC , AB ⊥ BC,AD 2 ,将腰CD 以点 D 为中心逆时针旋转 90°至 DE ,连接 AE、CE ,△ADE 的面积为 3,则 BC 的长为_______.
【答案】5.
【解析】
过D点作DF⊥BC,垂足为F,过E点作EG⊥AD,交AD的延长线与G点,由旋转的性质可知△CDF≌△EDG,从而有CF=EG,由△ADE的面积可求EG,得出CF的长,由矩形的性质得BF=AD,根据BC=BF+CF求解.
过D点作DF⊥BC,垂足为F,过E点作EG⊥AD,交AD的延长线与G点,
由旋转的性质可知CD=ED,
∵∠EDG+∠CDG=∠CDG+∠FDC=90°,
∴∠EDG=∠FDC,又∠DFC=∠G=90°,
∴△CDF≌△EDG,∴CF=EG,
∵S△ADE=AD×EG=3,AD=2,
∴EG=3,则CF=EG=3,
依题意得四边形ABFD为矩形,∴BF=AD=2,
∴BC=BF+CF=2+3=5.
故答案为:5
练习册系列答案
相关题目