题目内容

【题目】问题探究:
如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.

(1)证明:AD=BE;
(2)求∠AEB的度数.
(3)如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.(Ⅰ)请求出∠AEB的度数;(Ⅱ)判断线段CM、AE、BE之间的数量关系,并说明理由.

【答案】
(1)

证明:∵△ACB和△DCE均为等边三角形,

∴∠ACB=∠DCE=60°,CA=CB,CD=CE,

∴∠ACD=∠BCE,

在△CDA和△CEB中,

∴△CDA≌△CEB,

∴AD=BE


(2)

解:∵△CDA≌△CEB,

∴∠CEB=∠CDA=120°,

又∠CED=60°,

∴∠AEB=120°﹣60°=60°


(3)

解:(Ⅰ)∵△ACB和△DCE均为等腰直角三角形,

∠ACB=∠DCE=90°,

∴AC=BC,CD=CE,

∠ACB=∠DCB=∠DCE﹣∠DCB,

即∠ACD=∠BCE,

在△ACD和△BCE中,

∴△ACD≌△BCE,

∴AD=BE,∠BEC=∠ADC=135°.

∴∠AEB=∠BEC﹣∠CED=135°﹣45°=90°;

(Ⅱ)AE=2CM+BE,

在等腰直角三角形DCE中,CM为斜边DE上的高,

∴CM=DM=ME,

∴DE=2CM.

∴AE=DE+AD=2CM+BE

∴AE=2CM+BE


【解析】问题探究:(1)证明△CDA≌△CEB,根据全等三角形的性质解答;(2)根据全等三角形的性质得到∠CEB=∠CDA=120°,计算即可;
问题变式:(Ⅰ)证明△CDA≌△CEB,根据全等三角形的性质解答;(Ⅱ)根据全等三角形的性质、直角三角形的性质解答.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网