题目内容

【题目】如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.

(1)当∠BQD=30°时,求AP的长;
(2)证明:在运动过程中,点D是线段PQ的中点;
(3)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.

【答案】
(1)

解:设AP=x,则BQ=x,

∵∠BQD=30°,∠C=60°,

∴∠QPC=90°,

∴QC=2PC,即x+6=2(6﹣x),

解得x=2,

即AP=2


(2)

证明:如图,

过P点作PF∥BC,交AB于F,

∵PF∥BC,

∴∠PFA=∠FPA=∠A=60°,

∴PF=AP=AF,

∴PF=BQ,

又∵∠BDQ=∠PDF,∠DBQ=∠DFP,

∴△DQB≌△DPF,

∴DQ=DP即D为PQ中点


(3)

运动过程中线段ED的长不发生变化,是定值为3,

理由:∵PF=AP=AF,PE⊥AF,

又∵△DQB≌△DPF,


【解析】(1)先判断出∠QPC是直角,再利用含30°的直角三角形的性质得出QC=2PC,建立方程求解决即可;(2)先作出PF∥BC得出∠PFA=∠FPA=∠A=60°,进而判断出△DQB≌△DPF得出DQ=DP即可得出结论;(3)利用等边三角形的性质得出EF= AF,借助DF=DB,即可得出DF= BF,最后用等量代换即可.
【考点精析】掌握等边三角形的性质是解答本题的根本,需要知道等边三角形的三个角都相等并且每个角都是60°.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网