题目内容

已知:如图,点E为?ABCD对角线AC上的一点,点F在BE的延长线上,且EF=BE,EF与CD相交于点G.
求证:DF∥AC.
(请用两种方法证明,可以添辅助线,可以不添辅助线,如果两种方法都添辅助线,要求是不同位置的线.)
精英家教网
分析:证法一:连接BD,交AC于点O,由已知得BO=DO,又已知EF=BE,所以得到DF∥AC;
证法二:由已知四边形ABCD是平行四边形,所以得到AB∥CD,继而得:
CG
AB
=
EG
BE
,又由AB=CD,BE=EF,所以得:
CG
CD
=
EG
EF
,从而证得DF∥AC.
解答:精英家教网证法一:连接BD,交AC于点O.(2分)
∵四边形ABCD是平行四边形,∴BO=DO.(2分)
∵BE=EF,∴OE∥DF,即DF∥AC.(4分)

证法二:∵四边形ABCD是平行四边形,∴AB∥CD,∴
CG
AB
=
EG
BE
.(2分)
∵AB=CD,BE=EF,∴
CG
CD
=
EG
EF
.(4分)
∴DF∥CE,即DF∥AC.(2分)
点评:此题考查的知识点平行线的性质及平行线分线段成比例,关键是由已知四边形ABCD是平行四边形,根据其性质及平行线分线段成比例证明.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网