题目内容
阅读理解:
计算(1+
+
+
)×(
+
+
+
)-(1+
+
+
+
)×(
+
+
)时,若把(
+
+
+
)与(
+
+
)分别各看着一个整体,再利用分配律进行运算,可以大大简化难度.过程如下:
解:设(
+
+
)为A,(
+
+
+
)为B,
则原式=B(1+A)-A(1+B)=B+AB-A-AB=B-A=
.请用上面方法计算:
①(1+
+
+
+
+
)(
+
+
+
+
+
)-(1+
+
+
+
+
+
)(
+
+
+
+
)
②(1+
+
…+
)(
+
…+
)-(1+
+
…+
)(
+
…+
).
计算(1+
1 |
2 |
1 |
3 |
1 |
4 |
1 |
2 |
1 |
3 |
1 |
4 |
1 |
5 |
1 |
2 |
1 |
3 |
1 |
4 |
1 |
5 |
1 |
2 |
1 |
3 |
1 |
4 |
1 |
2 |
1 |
3 |
1 |
4 |
1 |
5 |
1 |
2 |
1 |
3 |
1 |
4 |
解:设(
1 |
2 |
1 |
3 |
1 |
4 |
1 |
2 |
1 |
3 |
1 |
4 |
1 |
5 |
则原式=B(1+A)-A(1+B)=B+AB-A-AB=B-A=
1 |
5 |
①(1+
1 |
2 |
1 |
3 |
1 |
4 |
1 |
5 |
1 |
6 |
1 |
2 |
1 |
3 |
1 |
4 |
1 |
5 |
1 |
6 |
1 |
7 |
1 |
2 |
1 |
3 |
1 |
4 |
1 |
5 |
1 |
6 |
1 |
7 |
1 |
2 |
1 |
3 |
1 |
4 |
1 |
5 |
1 |
6 |
②(1+
1 |
2 |
1 |
3 |
1 |
n |
1 |
2 |
1 |
3 |
1 |
n+1 |
1 |
2 |
1 |
3 |
1 |
n+1 |
1 |
2 |
1 |
3 |
1 |
n |
(1)设(
+
+
+
+
)为A,(
+
+
+
+
+
)为B,
原式=(1+A)B-(1+B)A=B+AB-A-AB=B-A=
;
(2)设(
+
+
+
+
+…+
)为A,(
+
+
+
+
+
+…+
)为B,
原式=(1+A)B-(1+B)A=B+AB-A-AB=B-A=
.
1 |
2 |
1 |
3 |
1 |
4 |
1 |
5 |
1 |
6 |
1 |
2 |
1 |
3 |
1 |
4 |
1 |
5 |
1 |
6 |
1 |
7 |
原式=(1+A)B-(1+B)A=B+AB-A-AB=B-A=
1 |
7 |
(2)设(
1 |
2 |
1 |
3 |
1 |
4 |
1 |
5 |
1 |
6 |
1 |
n |
1 |
2 |
1 |
3 |
1 |
4 |
1 |
5 |
1 |
6 |
1 |
7 |
1 |
n+1 |
原式=(1+A)B-(1+B)A=B+AB-A-AB=B-A=
1 |
n+1 |
练习册系列答案
相关题目