题目内容
已知:如图,同心圆O,大圆的弦AB=CD,且AB是小圆的切线,切点为E.求证:CD是小圆的切线.
证明:如右图所示,连接OE,过O作OF⊥CD于F.
∵AB与小⊙O切于点E,
∴OE⊥AB,
∵AB=CD,
∴OE=OF(同圆等弦的弦心距相等),
∴CD与小⊙O相切.
分析:要证CD是小圆的切线,过O作OF⊥CD于F,AB与小⊙O切于点E,根据同圆等弦的弦心距相等可知OE=OF.
点评:题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线;解决问题的关键是同圆等弦的弦心距相等.
∵AB与小⊙O切于点E,
∴OE⊥AB,
∵AB=CD,
∴OE=OF(同圆等弦的弦心距相等),
∴CD与小⊙O相切.
分析:要证CD是小圆的切线,过O作OF⊥CD于F,AB与小⊙O切于点E,根据同圆等弦的弦心距相等可知OE=OF.
点评:题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线;解决问题的关键是同圆等弦的弦心距相等.
练习册系列答案
相关题目