题目内容

【题目】如图,在△ABC中,AB=AC=13厘米,BC=10厘米,AD⊥BC于点D,动点P从点A出发以每秒1厘米的速度在线段AD上向终点D运动.设动点运动时间为t秒.
(1)求AD的长;
(2)当△PDC的面积为15平方厘米时,求t的值;
(3)动点M从点C出发以每秒2厘米的速度在射线CB上运动.点M与点P同时出发,且当点P运动到终点D时,点M也停止运动.是否存在t,使得SPMD= SABC?若存在,请求出t的值;若不存在,请说明理由.

【答案】
(1)解:∵AB=AC=13,AD⊥BC,

∴BD=CD=5cm,且∠ADB=90°,

∴AD2=AC2﹣CD2

∴AD=12cm


(2)解:AP=t,PD=12﹣t,

又∵由△PDM面积为 PD×DC=15,

解得PD=6,∴t=6


(3)解:假设存在t,

使得SPMD= SABC

① 若点M在线段CD上,

时,PD=12﹣t,DM=5﹣2t,

由SPMD= SABC

2t2﹣29t+50=0

解得t1=12.5(舍去),t2=2.

②若点M在射线DB上,即

由SPMD= SABC

2t2﹣29t+70=0

解得

综上,存在t的值为2或 ,使得SPMD= SABC


【解析】①根据等腰三角形性质和勾股定理解答即可;②根据直角三角形面积求出PD×DC× =15即可求出t;③根据题意列出PD、MD的表达式解方程组,由于M在D点左右两侧情况不同,所以进行分段讨论即可,注意约束条件.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网