题目内容
【题目】一所中学九年级240名同学参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20名学生每人的植树数量,所分四个类别为,A:植4棵;B:植5棵;C:植6棵;D:植7棵.将各类别人数绘制成扇形图和条形图.经确认扇形图是正确的,而条形图尚有一处错误.
(1)指出条形图中存在的错误,并说明理由.
(2)指出样本的众数、中位数.
(3)估计在全年级随机抽取1人,植树5棵的概率.
(4)估计全年级240名同学这次共植树多少棵.(精确到10棵)
【答案】(1)D错误,理由详见解析;(2)众数:5;中位数:5;(3)0.4;(4)1270
【解析】
(1)利用总人数乘对应的百分比求解即可;
(2)根据众数、中位数的定义即可直接求解;
(3)计算样本植树5棵的百分比后即可确定概率;
(4)计算样本平均数后即可求得答案.
解:(1)D错误,理由:20×10%=2≠3;
(2)由题意可知,植树5棵人数最多,故众数为5,
共有20人植树,其中位数是第10、11人植树数量的平均数,
即(5+5)=5,故中位数为5;
(3)样本植树5棵的百分比为1﹣(20%+30%+10%)=40%,
估计在全年级随机抽取1人,植树5棵的概率是0.4;
(4)样本平均数为(4×4+5×8+6×6+7×2)=5.3,
估计240名同学这次共植树5.3×240=1272≈1270(棵).
【题目】某公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的日销售量件与时间天的关系如下表:
时间天 | 1 | 3 | 5 | 10 | 36 | |
日销售量件 | 94 | 90 | 86 | 76 | 24 |
已知未来40天内,前20天该商品每天的价格元件与时间t的函数关系式为(,且t为整数),后20天该商品每天的价格元件与时间t的函数关系式为(,且t为整数).
求m与t之间的函数关系式;
未来40天内,后20天中哪一天的日销售利润最大最大日销售利润是多少.
在实际销售的前20天中,该公司决定每销售一件商品,就捐赠元给希望工程公司查阅销售记录发现,前20天中,扣除捐赠后的日销售利润随时间t的增大而增大,求a的取值范围.