题目内容

【题目】如图,过正方形ABCD顶点B,C的⊙O与AD相切于点P,与AB,CD分别相交于点E、F,连接EF.

(1)求证:PF平分∠BFD.
(2)若tan∠FBC= ,DF= ,求EF的长.

【答案】
(1)

证明:连接OP,BF,PF,

∵⊙O与AD相切于点P,

∴OP⊥AD,

∵四边形ABCD的正方形,

∴CD⊥AD,

∴OP∥CD,

∴∠PFD=∠OPF,

∵OP=OF,

∴∠OPF=∠OFP,

∴∠OFP=∠PFD,

∴PF平分∠BFD;


(2)

解:连接EF,

∵∠C=90°,

∴BF是⊙O的直径,

∴∠BEF=90°,

∴四边形BCFE是矩形,

∴EF=BC,

∵AB∥OP∥CD,BO=FO,

∴OP= AD= CD,

∵PD2=DFCD,即( 2= CD,

∴CD=4

∴EF=BC=4


【解析】(1)根据切线的性质得到OP⊥AD,由四边形ABCD的正方形,得到CD⊥AD,推出OP∥CD,根据平行线的性质得到∠PFD=∠OPF,由等腰三角形的性质得到∠OPF=∠OFP,根据角平分线的定义即可得到结论;(2)由∠C=90°,得到BF是⊙O的直径,根据圆周角定理得到∠BEF=90°,推出四边形BCFE是矩形,根据矩形的性质得到EF=BC,根据切割线定理得到PD2=DFCD,于是得到结论.本题考查了切线的性质,正方形的性质,圆周角定理,等腰三角形的性质,平行线的性质,切割线定理,正确的作出辅助线是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网