题目内容
【题目】如图,在平面直角坐标系中,A(a,0),B(0,b),且a、b满足(a﹣2)2+=0.
(1)求直线AB的解析式;
(2)若点M为直线y=mx上一点,且△ABM是等腰直角三角形,求m值;
(3)过A点的直线y=kx﹣2k交y轴于负半轴于P,N点的横坐标为﹣1,过N点的直线y=x﹣交AP于点M,试证明的值为定值.
【答案】(1)y=﹣2x+4;(2)m的值是或或1.(3)=2.
【解析】
试题分析:(1)求出a、b的值得到A、B的坐标,设直线AB的解析式是y=kx+b,代入得到方程组,求出即可;
(2)当BM⊥BA,且BM=BA时,过M作MN⊥y轴于N,证△BMN≌△ABO(AAS),求出M的坐标即可;②当AM⊥BA,且AM=BA时,过M作MN⊥x轴于N,同法求出M的坐标;③当AM⊥BM,且AM=BM时,过M作MN⊥x轴于N,MH⊥y轴于H,证△BHM≌△AMN,求出M的坐标即可.
(3)设NM与x轴的交点为H,分别过M、H作x轴的垂线垂足为G,HD交MP于D点,求出H、G的坐标,证△AMG≌△ADH,△AMG≌△ADH≌△DPC≌△NPC,推出PN=PD=AD=AM代入即可求出答案.
解:(1)∵(a﹣2)2+=0,
∴a=2,b=4,
∴A(2,0),B(0,4),
设直线AB的解析式是y=kx+b,
代入得:,
解得:k=﹣2,b=4,
则函数解析式为:y=﹣2x+4;
(2)如图2,分三种情况:
①如图1,当BM⊥BA,且BM=BA时,过M作MN⊥y轴于N,
∵BM⊥BA,MN⊥y轴,OB⊥OA,
∴∠MBA=∠MNB=∠BOA=90°,
∴∠NBM+∠NMB=90°,∠ABO+∠NBM=90°,
∴∠ABO=∠NMB,
在△BMN和△ABO中,
,
∴△BMN≌△ABO(AAS),
MN=OB=4,BN=OA=2,
∴ON=2+4=6,
∴M的坐标为(4,6),
代入y=mx得:m=,
②如图2,
当AM⊥BA,且AM=BA时,过M作MN⊥x轴于N,△BOA≌△ANM(AAS),同理求出M的坐标为(6,2),m=,
③如图4,
当AM⊥BM,且AM=BM时,过M作MN⊥X轴于N,MH⊥Y轴于H,则△BHM≌△AMN,
∴MN=MH,
设M(x,x)代入y=mx得:x=mx,
∴m=1,
答:m的值是或或1.
(3)解:如图3,结论2是正确的且定值为2,
设NM与x轴的交点为H,过M作MG⊥x轴于G,过H作HD⊥x轴,HD交MP于D点,连接ND,
由y=与x轴交于H点,
∴H(1,0),
由y=与y=kx﹣2k交于M点,
∴M(3,k),
而A(2,0),
∴A为HG的中点,
∴△AMG≌△ADH(ASA),
又因为N点的横坐标为﹣1,且在y=上,
∴可得N 的纵坐标为﹣k,同理P的纵坐标为﹣2k,
∴ND平行于x轴且N、D的横坐标分别为﹣1、1
∴N与D关于y轴对称,
∵△AMG≌△ADH≌△DPC≌△NPC,
∴PN=PD=AD=AM,
∴=2.