题目内容
【题目】如图,已知□ABCD的对角线AC、BD交于O,且∠1=∠2.
(1)求证:□ABCD是菱形;
(2)F为AD上一点,连结BF交AC于E,且AE=AF.求证:AO=(AF+AB).
【答案】(1)证明见解析;(2)证明见解析.
【解析】试题分析:(1)利用平行线的性质以及等角对等边即可证得AB=BC,则依据菱形的定义即可判断;
(2)首先证明△BCE是等腰三角形,然后依据平行四边形的对角线互相平分即可证得.
试题解析:(1)∵ABCD中,AD∥BC,
∴∠2=∠ACB,
又∵∠1=∠2,
∴∠1=∠ACB
∴AB=BC,
∴ABCD是菱形;
(2)∵ABCD中,AD∥BC,
∴∠AFE=∠EBC,
又∵AF=AE,
∴∠AFE=∠AEF=∠BEC,
∴∠EBC=∠BEC,
∴BC=CE,
∴AC=AE+CE=AF+BC=2OA,
∴OA=(AF+BC),
又∵AB=BC,
∴OA=(AF+AB).
练习册系列答案
相关题目