题目内容
【题目】如图①已知△ACB和△DCE为等腰直角三角形,按如图的位置摆放,直角顶点
C重合.
(1)求证:AD=BE;
(2)将△DCE绕点C旋转得到图②,点A、D、E在同一直线上时,若CD=,BE=3,
求AB 的长;
(3)将△DCE绕点C顺时针旋转得到图③,若∠CBD=45°,AC=6,BD=3,求BE的长.
【答案】(1)证明见解析;(2);(3)9
【解析】(1)利用等腰直角三角形的性质求出∠ACD=∠ECB,用SAS证明△ACD≌△BCE即可;(2)利用(1)的结论∠AEB=90°,在Rt△AEB中,用勾股定理求出AB;(3)连接AD, 求出∠ABD=90°,在Rt△ADB中,用勾股定理求出AD,由△ACD≌△BCE即可求得BE.
解:(1)∵△ACB和△DCE为等腰直角三角形
∴AC=CB,DC=CE,
∠ACB=90°, ∠DCE=90°
∴∠ACB-∠DCB =∠DCE-∠DCB
即∠ACD=∠ECB
∴△ACD≌△BCE (SAS)
∴AD=BE
(2)解:
∵△DCE为等腰直角三角形
∴DC=EC=
∴DE=2
∵△ACD≌△BCE (SAS)
∴AD=BE=3
∠ADC=∠BEC=180°-45°=135°
∴∠AEB=135°-45°=90°
在Rt △AEB中,AB=
(3)连接AD,
∵△ACB为等腰直角三角形
∴AC=BC=6, ∠ABC=45°
∴AB=
∵∠CBD=45°
∴∠ABD=45°+45°=90°
在Rt △ADB中,AD=
∵△ACD≌△BCE (SAS)
∴AD=BE=9
“点睛”本题考查了等腰直角三角形的性质、全等三角形及勾股定理的运用,解题关键是证明两个三角形全等,解题时要考虑辅助线的作法.
练习册系列答案
相关题目