题目内容
如图:△ABC中,AB=4,AC=6,AD平分∠BAC,BD⊥AD,E是BC中点,那么DE=______.
延长BD交AC于F点.
∵AD平分∠BAC,
∴∠FAD=∠BAD;
∵AD⊥BD,
∴∠ADF=∠ADB;
在△ADB和△ADF中
,
∴△ABD≌△AFD(ASA),
∴BD=DF,AF=AB=4.
∵AC=6,
∴FC=6-4=2,
∵E为BC中点,
∴BE=CE,
∴DE=
FC,
∴DE=1.
故答案为1.
∵AD平分∠BAC,
∴∠FAD=∠BAD;
∵AD⊥BD,
∴∠ADF=∠ADB;
在△ADB和△ADF中
|
∴△ABD≌△AFD(ASA),
∴BD=DF,AF=AB=4.
∵AC=6,
∴FC=6-4=2,
∵E为BC中点,
∴BE=CE,
∴DE=
1 |
2 |
∴DE=1.
故答案为1.
练习册系列答案
相关题目