题目内容

【题目】如图,在△ABC中,∠ABC90°,BC3DAC延长线上一点,AC3CD,过点DDHAB,交BC的延长线于点H,求BDcosHBD的值.

【答案】4

【解析】

DHAB平行,得到一对内错角相等,再由一对内错角相等,利用两角相等的三角形相似得到三角形ABC与三角形DHC相似,由相似得比例求出CH的长,由BC+CH求出BH的长,在直角三角形BHD中,利用锐角三角函数定义求出所求式子的值即可.

解:∵DHAB

∴∠BHD=∠ABC90°

∵∠ACB=∠DCH

∴△ABC∽△DHC

AC3CD,即

BC3

CH1

BHBC+CH3+14

RtBHD中,cosHBD

BDcosHBDBH4

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网