题目内容
(2012•泰州)如图,已知直线l与⊙O相离,OA⊥l于点A,OA=5.OA与⊙O相交于点P,AB与⊙O相切于点B,BP的延长线交直线l于点C.
(1)试判断线段AB与AC的数量关系,并说明理由;
(2)若PC=2
,求⊙O的半径和线段PB的长;
(3)若在⊙O上存在点Q,使△QAC是以AC为底边的等腰三角形,求⊙O的半径r的取值范围.
(1)试判断线段AB与AC的数量关系,并说明理由;
(2)若PC=2
5 |
(3)若在⊙O上存在点Q,使△QAC是以AC为底边的等腰三角形,求⊙O的半径r的取值范围.
分析:(1)连接OB,根据切线的性质和垂直得出∠OBA=∠OAC=90°,推出∠OBP+∠ABP=90°,∠ACP+∠CPA=90°,求出∠ACP=∠ABC,根据等腰三角形的判定推出即可;
(2)延长AP交⊙O于D,连接BD,设圆半径为r,则OP=OB=r,PA=5-r,根据AB=AC推出52-r2=(2
)2-(5-r)2,求出r,证△DPB∽△CPA,得出
=
,代入求出即可;
(3)根据已知得出Q在AC的垂直平分线上,作出线段AC的垂直平分线MN,作OE⊥MN,求出OE<r,求出r范围,再根据相离得出r<5,即可得出答案.
(2)延长AP交⊙O于D,连接BD,设圆半径为r,则OP=OB=r,PA=5-r,根据AB=AC推出52-r2=(2
5 |
CP |
PD |
AP |
BP |
(3)根据已知得出Q在AC的垂直平分线上,作出线段AC的垂直平分线MN,作OE⊥MN,求出OE<r,求出r范围,再根据相离得出r<5,即可得出答案.
解答:解:(1)AB=AC,理由如下:
连接OB.
∵AB切⊙O于B,OA⊥AC,
∴∠OBA=∠OAC=90°,
∴∠OBP+∠ABP=90°,∠ACP+∠APC=90°,
∵OP=OB,
∴∠OBP=∠OPB,
∵∠OPB=∠APC,
∴∠ACP=∠ABC,
∴AB=AC;
(2)延长AP交⊙O于D,连接BD,
设圆半径为r,则OP=OB=r,PA=5-r,
则AB2=OA2-OB2=52-r2,
AC2=PC2-PA2=(2
)2-(5-r)2,
∴52-r2=(2
)2-(5-r)2,
解得:r=3,
∴AB=AC=4,
∵PD是直径,
∴∠PBD=90°=∠PAC,
又∵∠DPB=∠CPA,
∴△DPB∽△CPA,
∴
=
,
∴
=
,
解得:PB=
.
∴⊙O的半径为3,线段PB的长为
;
(3)作出线段AC的垂直平分线MN,作OE⊥MN,则可以推出OE=
AC=
AB=
;
又∵圆O与直线MN有交点,
∴OE=
≤r,
≤2r,
25-r2≤4r2,
r2≥5,
∴r≥
,
∵25-r2≤4r2
又∵圆O与直线相离,
∴r<5,
即
≤r<5.
连接OB.
∵AB切⊙O于B,OA⊥AC,
∴∠OBA=∠OAC=90°,
∴∠OBP+∠ABP=90°,∠ACP+∠APC=90°,
∵OP=OB,
∴∠OBP=∠OPB,
∵∠OPB=∠APC,
∴∠ACP=∠ABC,
∴AB=AC;
(2)延长AP交⊙O于D,连接BD,
设圆半径为r,则OP=OB=r,PA=5-r,
则AB2=OA2-OB2=52-r2,
AC2=PC2-PA2=(2
5 |
∴52-r2=(2
5 |
解得:r=3,
∴AB=AC=4,
∵PD是直径,
∴∠PBD=90°=∠PAC,
又∵∠DPB=∠CPA,
∴△DPB∽△CPA,
∴
CP |
PD |
AP |
BP |
∴
2
| ||
3+3 |
5-3 |
BP |
解得:PB=
6
| ||
5 |
∴⊙O的半径为3,线段PB的长为
6
| ||
5 |
(3)作出线段AC的垂直平分线MN,作OE⊥MN,则可以推出OE=
1 |
2 |
1 |
2 |
1 |
2 |
52-r2 |
又∵圆O与直线MN有交点,
∴OE=
1 |
2 |
52-r2 |
25-r2 |
25-r2≤4r2,
r2≥5,
∴r≥
5 |
∵25-r2≤4r2
又∵圆O与直线相离,
∴r<5,
即
5 |
点评:本题考查了等腰三角形的性质和判定,相似三角形的性质和判定,切线的性质,勾股定理,直线与圆的位置关系等知识点的应用,主要培养学生运用性质进行推理和计算的能力.本题综合性比较强,有一定的难度.
练习册系列答案
相关题目