题目内容
【题目】如图,在平面直角坐标系中,已知,两点的坐标分别为,,是线段上一点(与,点不重合),抛物线()经过点,,顶点为,抛物线()经过点,,顶点为,,的延长线相交于点.
(1)若,,求抛物线,的解析式;
(2)若,,求的值;
(3)是否存在这样的实数(),无论取何值,直线与都不可能互相垂直?若存在,请直接写出的两个不同的值;若不存在,请说明理由.
【答案】(1)抛物线L1的解析式为y=,抛物线L2的解析式为y=(2)m=±2(3)存在
【解析】
试题分析:(1)把a、m代入得到已知点,把点代入函数的解析式,然后构成方程组,根据待定系数法可求出函数的解析式;
(2)如图,过点D作DG⊥x轴于点G,过点E作EH⊥x轴于点H,把a=-1代入函数解析式,然后结合(m,0)和(-4,0)代入可求解出函数解析式L1,然后分别求出D点坐标,得到DG、AG的长,同理得到L2,求得EH,BH的长,再根据三角形相似的判定与性质构造方程求解即可;
(3)根据前面的解答,直接写出即可.
试题解析:(1)由题意得
解得
所以抛物线L1的解析式为y=
同理,
解得
∴所以抛物线L2的解析式为y=
(2)如图,过点D作DG⊥x轴于点G,过点E作EH⊥x轴于点H
由题意得
解得
∴抛物线L1的解析式为y=-x2+(m-4)x+4m
∴点D的坐标为(,)
∴DG=,AG=
同理可得,抛物线L2的解析式为y=-x2+(m+4)x-4m
EH=,BH=
∵AF⊥BF,DG⊥x轴,EH⊥x轴
∴∠AFB=∠AGD=∠EHB=90°
∴∠ADG=∠ABF=90°-∠BAF
∴△ADG∽△EBH
∴
∴
解得m=±2
(3)存在,例如:a=-,a=-.(答案不唯一)
练习册系列答案
相关题目