题目内容
【题目】如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边正方形EFGH的周长为( )
A.
B.2
C.
+1
D.2 +1
【答案】B
【解析】解:∵正方形ABCD的面积为1,
∴BC=CD= =1,∠BCD=90°,
∵E、F分别是BC、CD的中点,
∴CE= BC= ,CF= CD= ,
∴CE=CF,
∴△CEF是等腰直角三角形,
∴EF= CE= ,
∴正方形EFGH的周长=4EF=4× =2 ;
故选:B.
【考点精析】解答此题的关键在于理解正方形的性质的相关知识,掌握正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.
练习册系列答案
相关题目