题目内容
【题目】如图,平面直角坐标系中,将含30°的三角尺的直角顶点C落在第二象限.其斜边两端点A、B分别落在x轴、y轴上,且AB=12cm
(1)若OB=6cm.①求点C的坐标;②若点A向右滑动的距离与点B向上滑动的距离相等,求滑动的距离;
(2)点C与点O的距离的最大值= cm.
【答案】(1)①C(,9);②;(2)12.
【解析】试题分析:(1)①过点C作y轴的垂线,垂足为D,利用含30°角的直角三角形的性质解答即可;
②设点A向右滑动的距离为x,则点B向上滑动的距离也为x,利用三角函数和勾股定理进行解答即可;
(2)过C作CE⊥x轴,CD⊥y轴,垂足分别为E,D,得到△ACE∽△BCD,再利用相似三角形的性质解答.
试题解析:(1)①过点C作y轴的垂线,垂足为D,如图1:
在Rt△AOB中,AB=12,OB=6,则BC=6,∴∠BAO=30°,∠ABO=60°,又∵∠CBA=60°,∴∠CBD=60°,∠BCD=30°,∴BD=3,CD=,所以点C的坐标为(,9);
②设点A向右滑动的距离为x,根据题意得点B向上滑动的距离也为x,如图2:
AO=12×cos∠BAO=12×cos30°=,∴A'O= ,B'O=6+x,A'B'=AB=12,在△A'O B'中,由勾股定理得, ,解得:x=,∴滑动的距离为;
(2)设点C的坐标为(x,y),过C作CE⊥x轴,CD⊥y轴,垂足分别为E,D,如图3:
则OE=﹣x,OD=y,∵∠ACE+∠BCE=90°,∠DCB+∠BCE=90°,∴∠ACE=∠DCB,又∵∠AEC=∠BDC=90°,∴△ACE∽△BCD,∴,即,∴, ==,∴当取最大值时,即C到y轴距离最大时, 有最大值,即OC取最大值,如图,即当C'B'旋转到与y轴垂直时,此时OC=12,故答案为:12.