题目内容
| BC |
求证:AD是⊙O的切线.
分析:连接OE交BC于点F,连接OD,利用垂径定理,以及等边对等角,即可证得:∠ODA=90°,从而证得AC是圆的切线.
解答:
证明:连接OE交BC于点F,连接OD.
∵E是
的中点,
∴OE⊥BC,
∴∠E+∠EMF=90°,
∵∠EDA=∠AMD,
又∠AMD=∠EMF,
∴∠ADM+∠E=90°,
∵OE=OD,
∴∠FEM=∠ODE,
∴∠ODE+∠ADM=90°,即∠ODA=90°,
∴OD⊥AD,
∴AD是圆的切线.
∵E是
| BC |
∴OE⊥BC,
∴∠E+∠EMF=90°,
∵∠EDA=∠AMD,
又∠AMD=∠EMF,
∴∠ADM+∠E=90°,
∵OE=OD,
∴∠FEM=∠ODE,
∴∠ODE+∠ADM=90°,即∠ODA=90°,
∴OD⊥AD,
∴AD是圆的切线.
点评:本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.
练习册系列答案
相关题目