题目内容

精英家教网已知,如图,PA切⊙O于点A,割线PD交⊙O于点C、D,∠P=45°,弦AB⊥PD,垂足为E,且BE=2CE,DE=6,CF⊥PC,交DA的延长线于点F.求tan∠CFE的值.
分析:求tan∠CFE的值就要找垂直关系,用边表示出来,转化为求边长的问题,由已知条件CF⊥PC,可以推出tan∠CFE=
CE
FC
,再利用圆的性质和切线的性质求出CE和FC两边的长度即可.
解答:解:由相交弦定理,得AE•BE=DE•CE
又∵BE=2CE
∴AE•2CE=6CE
∴AE=3
∵AB⊥PD
∴∠AEP=90°
又∵∠P=45°
∴∠EAP=∠P=45°
∴PE=AE=3
在Rt△AEP中,由勾股定理,得:
PA=
AE2+PE2
=
32+32
=3
2

∵PA切⊙O于点A
∴PA2=PC•PD
∴PC=
PA2
PO
=
(3
2
)
2
3+6
=2

∴CE=PE-PC=3-2=1
∵FC⊥PD∴∠FCE=90°
又∵∠AED=90°
∴∠AED=∠FCE
∴AE∥FC
DE
DC
=
AE
FC

∴FC=
DC•AE
DE
=
(6+1)×3
6
=
7
2

∴tan∠CFE=
CE
FC
=
1
7
2
=
2
7
点评:此题考查知识点较多,有圆的性质,平行线分线段成比例,相交弦定理,勾股定理及切割线定理,是一道综合性较强的题,同时也用到转化思想,把求tan∠CFE的问题转化为求边长的问题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网