题目内容

【题目】如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.
(1)求证:△ABD是等腰三角形;
(2)若∠A=40°,求∠DBC的度数;
(3)若AE=6,△CBD的周长为20,求△ABC的周长.

【答案】
(1)证明:∵AB的垂直平分线MN交AC于点D,

∴DB=DA,

∴△ABD是等腰三角形;


(2)解:∵△ABD是等腰三角形,∠A=40°,

∴∠ABD=∠A=40°,∠ABC=∠C=(180°﹣40°)÷2=70°

∴∠DBC=∠ABC﹣∠ABD=70°﹣40°=30°;


(3)解:∵AB的垂直平分线MN交AC于点D,AE=6,

∴AB=2AE=12,

∵△CBD的周长为20,

∴AC+BC=20,

∴△ABC的周长=AB+AC+BC=12+20=32.


【解析】(1)根据线段的垂直平分线到线段两端点的距离相等即可得证;(2)首先利用三角形内角和求得∠ABC的度数,然后减去∠ABD的度数即可得到答案;(3)将△ABC的周长转化为AB+AC+BC的长即可求得.
【考点精析】认真审题,首先需要了解线段垂直平分线的性质(垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线;线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网