题目内容
【题目】已知关于x的方程x2+(2m+1)x+m2+2=0有两个不相等的实数根,试判断直线y=(2m-3)x-4m+7能否经过点A(-2,4),并说明理由.
【答案】该直线不经过点A,理由见解析.
【解析】试题分析:根据已知求出b2﹣4ac=4m﹣7>0,确定2m﹣3和﹣4m+7的范围,从而得到图象经过一、三、四象限,即可判断答案.
试题解析:解:该直线不经过点A.理由如下:
∵方程x2+(2m+1)x+m2+2=0有两个不相等的实数根,∴△=(2m+1)2-4(m2+2)=4m-7>0,∴2m->0,∴2m-3>0.
又由4m-7>0,得-4m+7<0,∴直线y=(2m-3)x-4m+7经过第一、三、四象限,而A(-2,4)在第二象限,∴该直线不经过点A.
练习册系列答案
相关题目