题目内容
【题目】阅读与思考:整式乘法与因式分解是方向相反的变形,由(x+p)(x+q)=x2+(p+q)x+pq得,x2+(p+q)x+pq=(x+p)(x+q);利用这个式子可以将某些二次项系数是1的二次三项式分解因式,例如:将式子x2﹣x﹣6分解因式.这个式子的常数项﹣6=2×(﹣3),一次项系数﹣1=2+(﹣3),这个过程可用十字相乘的形式形象地表示:先分解常数项,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项系数.如图所示.这种分解二次三项式的方法叫“十字相乘法”,请同学们认真观察,分析理解后,解答下列问题.
(1)分解因式:x2+7x﹣18.
(2)填空:若x2+px﹣8可分解为两个一次因式的积,则整数p的所有可能值是 .
【答案】(1)(x+9)(x﹣2);(2)7,﹣7,2,﹣2
【解析】
试题分析:(1)仿照题中十字相乘法将原式分解即可;
(2)把﹣8分为两个整数相乘,其和即为整数p的值,写出即可.
解:(1)原式=(x+9)(x﹣2);
(2)若x2+px﹣8可分解为两个一次因式的积,则整数p的所有可能值是﹣8+1=﹣7;﹣1+8=7;﹣2+4=2;﹣4+2=﹣2,
故答案为:7,﹣7,2,﹣2
练习册系列答案
相关题目