题目内容
【题目】(2016广东省茂名市)如图,一次函数y=x+b的图象与反比例函数(k为常数,k≠0)的图象交于点A(﹣1,4)和点B(a,1).
(1)求反比例函数的表达式和a、b的值;
(2)若A、O两点关于直线l对称,请连接AO,并求出直线l与线段AO的交点坐标.
【答案】(1),,;(2)(,2).
【解析】
试题(1)由点A的坐标结合反比例函数图象上点的坐标特征,即可求出k值,从而得出反比例函数解析式;再将点A、B坐标分别代入一次函数y=x+b中得出关于a、b的二元一次方程组,解方程组即可得出结论;(2)连接AO,设线段AO与直线l相交于点M.由A、O两点关于直线l对称,可得出点M为线段AO的中点,再结合点A、O的坐标即可得出结论.
试题解析:(1)∵点A(﹣1,4)在反比例函数y=(k为常数,k≠0)的图象上,
∴k=﹣1×4=﹣4, ∴反比例函数解析式为y=﹣
把点A(﹣1,4)、B(a,1)分别代入y=x+b中,
得:,解得:.
(2)连接AO,设线段AO与直线l相交于点M,如图所示. ∵A、O两点关于直线l对称,
∴点M为线段OA的中点, ∵点A(﹣1,4)、O(0,0), ∴点M的坐标为(﹣,2).
∴直线l与线段AO的交点坐标为(﹣,2).
【题目】某校要从小王和小李两名同学中挑选一人参加全市知识竞赛,在最近的五次选拔测试中,他俩的成绩分别如下表:
姓 名 | 1 | 2 | 3 | 4 | 5 |
小 王 | 60 | 75 | 100 | 90 | 75 |
小 李 | 70 | 90 | 80 | 80 | 80 |
根据上表解答下列问题:
(1)完成下表:
姓 名 | 平均成绩(分) | 中位数(分) | 众数(分) | 方差 |
小 王 | 75 | 190 | ||
小 李 | 80 | 80 |
(2)在这五次测试中,成绩比较稳定的同学是谁?若将80分以上(含80分)的成绩视为秀,则小王、小李在这五次测试中的优秀率各是多少?
(3)历届比赛表明,成绩达到80分以上(含80分)就很可能获奖,成绩达到90分以上(含90分)就很可能获得一等奖,那么你认为选谁参加比赛比较合适?说明你的理由.