题目内容
若(x﹣2)(x2+ax+b)的积中不含x的二次项和一次项,求(2a+b+1)(2a﹣b﹣1)﹣(a+2b)(﹣2b+a)+2b的值.
若一元二次方程有两个不相等的实数根,则k的取值范围是 .
如图,在△AOB中,OA=OB,点C为AB的中点,AB=16,以点O为圈心,6为半径的圆经过点C,分别交OA、OB于点E、F.
(1)求证:AB为⊙O的切线;
(2)求图中阴影部分的面积.(注:结果保留π,sin37°=0.6,cos37°=0.8,tan37°=0.75)
已知关于x的不等式组只有唯一的整数解,则a的值可以是( )
A. ﹣1 B. C. 1 D. 2
某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于50%.经试销发现,销售量P(件)与销售单价x(元)符合一次函数关系,当销售单价为65元时销售量为55件,当销售单价为75元时销售量为45件.
(Ⅰ)求P与x的函数关系式;
(Ⅱ)若该商场获得利润为y元,试写出利润y与销售单价x之间的关系式;
(Ⅲ)销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?
如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴正半轴相交于A、B两点,与y轴相交于点C,对称轴为直线x=2,且OA=OC.则下列结论:①abc>0;②9a+3b+c>0;③c>﹣1;④关于x的方程ax2+bx+c=0(a≠0)有一个根为﹣;⑤抛物线上有两点P(x1,y1)和Q(x2,y2),若x1<2<x2,且x1+x2>4,则y1>y2.其中正确的结论有( )
A. 2个 B. 3个 C. 4个 D. 5个
现从10个红球,6个白球,4个黄球中任取m个球,并给出以下说法:①若m≥11,则任取的m个球中至少1个红球的概率为1;②若m≥15,则任取的m个球中至少1个白球的概率为1;③若m≥17,则任取的m个球中至少1个黄球的概率为1.其中错误的说法有( )
A. 0个 B. 1个 C. 2个 D. 3个
已知一次函数y=kx+2k+3(k≠0),不论k为何值,该函数的图象都经过点A,则点A的坐标为_____.
图1是一个小朋友玩“滚铁环”的游戏,铁环是圆形的,铁环向前滚动时,铁环钩保持与铁环相切.将这个游戏抽象为数学问题,如图2.已知铁环的半径为25 cm,设铁环中心为O,铁环钩与铁环相切点为M,铁环与地面接触点为A,∠MOA=α,且sinα=.
(1)求点M离地面AC的高度BM;
(2)设人站立点C与点A的水平距离AC=55 cm,求铁环钩MF的长度.