题目内容
若一元二次方程有两个不相等的实数根,则k的取值范围是 .
一个不透明的袋子里装有质地、大小都相同的3个红球和1个绿球;随机从中摸出一球,不再放回,充分搅均后再随机摸出一球。则两次都摸到红球的概率是( )
A. B. C. D.
如图,M是线段AB的中点,N是线段BC的中点,AB=8cm,BC=6cm,则线段MN=______ cm.
如图,已知抛物线的对称轴为直线,且抛物线与轴交于、两点,与轴交于点,其中,.
(1)若直线经过、两点,求直线和抛物线的解析式;
(2)在抛物线的对称轴上找一点,使点到点的距离与到点的距离之和最小,求出点的坐标;
(3)设点为抛物线的对称轴上的一个动点,求使为直角三角形的点的坐标.
解方程:(x+4)2=5(x+4)
如图,在三角形ABC中,∠ACB=90°,∠B=50°,将此三角形绕点C沿顺时针方向旋转后得到三角形A′B′C,若点B′恰好落在线段AB上,AC、A′B′交于点O,则∠COA′的度数是( )
A. 50° B. 60° C. 70° D. 80°
定义:有一个角是其邻角一半的圆内接四边形叫做圆内倍角四边形.
(1)如图1,四边形ABCD内接于⊙O,∠DCB﹣∠ADC=∠A,求证:四边形ABCD为圆内接倍角四边形;
(2)在(1)的条件下,⊙O半径为5.
①若AD为直径,且sinA=,求BC的长;
②若四边形ABCD中有一个角为60°,且BC=CD,则四边形ABCD的面积是 ;
(3)在(1)的条件下,记AB=a,BC=b,CD=c,AD=d,求证:d2﹣b2=ab+cd.
如图,在?ABCD中,点E是DC边上一点,连接AE、BE,若AE、BE分别是∠DAB、∠CBA的角平分线,且AB=4,则?ABCD的周长为( )
A. 10 B. 8 C. 5 D. 12
若(x﹣2)(x2+ax+b)的积中不含x的二次项和一次项,求(2a+b+1)(2a﹣b﹣1)﹣(a+2b)(﹣2b+a)+2b的值.