题目内容

【题目】如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为( ,1),下列结论:①ac<0;②a+b=0;③4ac﹣b2=4a;④a+b+c<0.其中正确结论的个数是(
A.1
B.2
C.3
D.4

【答案】C
【解析】解:根据图象可知: ①a<0,c>0
∴ac<0,正确;
②∵顶点坐标横坐标等于
=
∴a+b=0正确;
③∵顶点坐标纵坐标为1,
=1;
∴4ac﹣b2=4a,正确;
④当x=1时,y=a+b+c>0,错误.
正确的有3个.
故选C.
【考点精析】掌握二次函数图象以及系数a、b、c的关系是解答本题的根本,需要知道二次函数y=ax2+bx+c中,a、b、c的含义:a表示开口方向:a>0时,抛物线开口向上; a<0时,抛物线开口向下b与对称轴有关:对称轴为x=-b/2a;c表示抛物线与y轴的交点坐标:(0,c).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网