题目内容

精英家教网如图,二次函数y=a x2+bx+c(a≠0)的图象与x轴交于A,B,与y轴交于点C,A、C的坐标分别是(1,0)和(0,2),B在A的右侧,且∠OCA=∠OBC.
(1)求证:△AOC∽△COB;
(2)求这个二次函数的解析式及顶点坐标.
分析:(1)利用两个角相等的三角形相似,直接进行判定即可;
(2)利用(1)的结论求得点B坐标,代入三点坐标即可求出函数解析式,再据函数解析式求得顶点坐标.
解答:精英家教网(1)证明:∵∠OCA=∠OBC,
∠COA=∠BOC=90°,
∴△AOC∽△COB;

(2)解:∵△AOC∽△COB,
OA
OC
=
OC
OB

1
2
=
2
OB

解得OB=4,
即点B的坐标为(4,0),
把点A、B、C三点代入函数解析式得,
c=2
4a+2b+c=0
16a+4b+c=0

解得
a=
1
2
b=-
5
2
c=2

所以函数解析式为:y=
1
2
x2-
5
2
x+2

因此顶点坐标为:(
5
2
-
9
8
).
点评:此题考查相似三角形的判定与性质,待定系数法求函数解析式以及求顶点坐标的方法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网