题目内容
【题目】在中,分别是上的点,,交于点,若,则四边形的面积为________。
【答案】
【解析】
连接DE,根据相似三角形的判定定理得出△DCE∽△ABC,进而判断出AB∥CD、△DEF∽△ABF,再根据相似三角形的性质即可进行解答.
连接DE,
∵AE=2CE,BD=2CD,
∴=,且夹角∠C为公共角,
∴△DCE∽△ABC,
∴∠CED=∠CAB,
∴AB∥DE,
∴△CDE∽△CBA,
∴== ,
∴= ,
∵S△ABC=3,
∴S△CDE=3×=,
且∠EDA=∠BAD,∠BED=∠ABE,
∴△DEF∽△ABF,
∴==,
∴设S△DEF=x,则S△AEF=S△BDF=3x,S△ABF=9x,
∴x+3x+3x+9x=3,
解得:x=,
∴S△DEF=,
∴S△DEF+S△CDE=+=.
故答案为:.
练习册系列答案
相关题目