题目内容
【题目】数学课上,小明和小颖对一道应用题进行了合作探究:一列火车匀速行驶,经过一条长为1000米的隧道需要50秒,整列火车完全在隧道里的时间是30秒,求火车的长度.
(1)请补全小明的探究过程:设火车的长度为x米,则从车头进入隧道到车尾离开隧道所走的路程为(1000+x)米,所以这段时间内火车的平均速度为米/秒;由题意,火车的平均速度还可以表示为 米/秒.再根据火车的平均速度不变,可列方程 ,解方程后可得火车的长度为 米.
(2)小颖认为:也可以通过设火车的平均速度为v米/秒,列出方程解决问题.请按小颖的思路完成探究过程.
【答案】(1);=;250;(2)见解析
【解析】
(1)根据速度=路程÷时间,火车穿过隧道,走过的路程=隧道长度+火车长度建立方程即可求解;
(2)设火车的平均速度为v米/秒,根据隧道的长度不变列出方程.
解:(1)由题意,得:火车的平均速度=.
由题意,得:=
解得x=250.
故答案是:;=;250;
(2)根据题意列方程得:50v﹣1000=1000﹣3v
解得:v=25.
火车长度:50v﹣1000=250(米)
答:火车的长度为250米.
【题目】下表是某水文站在雨季对某条河一周内水位变化情况的记录(上升为正,下降为负)
时间 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期日 |
水位变化/ | +0.2 | +0.3 | -0.4 | -0.4 | -0.1 | +0.2 | +0.4 |
注:①表中记录的数据为每天中午12时的水位与前一天12时水位的变化量;②上星期日12时的水位高度为.
(1)请你通过计算说明本周日与上周日相比,水位是上升了还是下降了;
(2)用折线连接本周每天的水位,并根据折线说明水位在本周内的升降趋势.
【题目】我区某陶瓷厂计划一周生产陶瓷工艺品350个,平均每天生产50个,但实际每天生产量与计划相比有出入,下表是某周的生产情况(以50个为标准,超产记为正、减产记为负):
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
增减(单位:个) | +4 | -6 | -7 | +15 | -5 | +16 | -8 |
(1)根据记录的数据,请直接写出该厂本周产量最多的一天比最少的一天多生产的工艺品的个数;
(2)该工艺厂在本周实际生产工艺品的数量为多少个?(列式计算);
(3)已知该厂实行每周计件工资制,每周结算一次,每生产一个工艺品可得6元,若超额完成任务(以350个为标准),则超过部分每个另奖12元,少生产每个扣4元,试求该陶瓷厂在这一周应付出的工资总额.