ÌâÄ¿ÄÚÈÝ
£¨2012•ÇàÑòÇøһģ£©Èçͼ£¬·Ö±ðÒÔÁ½¸ö±Ë´ËÏàÁÚµÄÕý·½ÐÎOABCÓëCDEFµÄ±ßOC¡¢OAËùÔÚÖ±ÏßΪxÖá¡¢yÖὨÁ¢Æ½ÃæÖ±½Ç×ø±êϵ£¨C¡¢FÁ½µãÔÚxÖáÕý°ëÖáÉÏ£©£®Èô¡ÑP¹ýA¡¢B¡¢EÈýµã£¨Ô²ÐÄPÔÚxÖáÉÏ£©£¬Å×ÎïÏßy=
x2+bx+c¾¹ýA¡¢CÁ½µã£¬ÓëxÖáµÄÁíÒ»½»µãΪG£¬Õý·½ÐÎCDEFµÄÃæ»ýΪ4£®
£¨1£©ÇóµãBµÄ×ø±ê£»
£¨2£©ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨3£©ÉèÖ±ÏßACÓëÅ×ÎïÏ߶ԳÆÖá½»ÓÚµãN£¬µãQÊǴ˶ԳÆÖáÉϲ»ÓëµãNÖغϵÄÒ»¶¯µã£®
¢ÙÇó¡÷ACQÖܳ¤µÄ×îСֵ£»
¢ÚÉèµãQµÄ×Ý×ø±êΪt£¬¡÷ACQµÄÃæ»ýΪS£¬Ö±½Óд³öSÓëtÖ®¼äµÄº¯Êý¹Øϵʽ£¬²¢Ö¸³öÏàÓ¦µÄtµÄÈ¡Öµ·¶Î§£®
1 | 8 |
£¨1£©ÇóµãBµÄ×ø±ê£»
£¨2£©ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨3£©ÉèÖ±ÏßACÓëÅ×ÎïÏ߶ԳÆÖá½»ÓÚµãN£¬µãQÊǴ˶ԳÆÖáÉϲ»ÓëµãNÖغϵÄÒ»¶¯µã£®
¢ÙÇó¡÷ACQÖܳ¤µÄ×îСֵ£»
¢ÚÉèµãQµÄ×Ý×ø±êΪt£¬¡÷ACQµÄÃæ»ýΪS£¬Ö±½Óд³öSÓëtÖ®¼äµÄº¯Êý¹Øϵʽ£¬²¢Ö¸³öÏàÓ¦µÄtµÄÈ¡Öµ·¶Î§£®
·ÖÎö£º£¨1£©Èçͼ¼×£¬Á¬½ÓPE¡¢PB£¬ÉèPC=n£¬ÓÉÕý·½ÐÎCDEFµÄÃæ»ýΪ4£¬¿ÉµÃCD=CF=2£¬¸ù¾ÝÔ²ºÍÕý·½ÐεĶԳÆÐÔÖª£ºOP=PC=n£¬ÓÉPB=PE£¬¸ù¾Ý¹´¹É¶¨Àí¼´¿ÉÇóµÃnµÄÖµ£¬¼Ì¶øÇóµÃBµÄ×ø±ê£»
£¨2£©ÓÉ£¨1£©ÖªA£¨0£¬4£©£¬C£¨4£¬0£©£¬¼´¿ÉÇóµÃÅ×ÎïÏߵĽâÎöʽ£»
£¨3£©¢ÙÈçͼÒÒ£¬ÑÓ³¤AB½»Å×ÎïÏßÓÚA¡ä£¬Á¬CA¡ä½»¶Ô³ÆÖáx=6ÓÚQ£¬Á¬AQ£¬ÔòÓÐAQ=A¡äQ£¬¡÷ACQÖܳ¤µÄ×îСֵΪAC+A¡äCµÄ³¤£¬ÀûÓù´¹É¶¨Àí¼´¿ÉÇóµÃ¡÷ACQÖܳ¤µÄ×îСֵ£»
¢Ú·Ö±ðµ±QµãÔÚFµãÉÏ·½Ê±£¬µ±QµãÔÚÏ߶ÎFNÉÏʱ£¬µ±QµãÔÚNµãÏ·½Ê±È¥·ÖÎö¼´¿ÉÇóµÃ´ð°¸£®
£¨2£©ÓÉ£¨1£©ÖªA£¨0£¬4£©£¬C£¨4£¬0£©£¬¼´¿ÉÇóµÃÅ×ÎïÏߵĽâÎöʽ£»
£¨3£©¢ÙÈçͼÒÒ£¬ÑÓ³¤AB½»Å×ÎïÏßÓÚA¡ä£¬Á¬CA¡ä½»¶Ô³ÆÖáx=6ÓÚQ£¬Á¬AQ£¬ÔòÓÐAQ=A¡äQ£¬¡÷ACQÖܳ¤µÄ×îСֵΪAC+A¡äCµÄ³¤£¬ÀûÓù´¹É¶¨Àí¼´¿ÉÇóµÃ¡÷ACQÖܳ¤µÄ×îСֵ£»
¢Ú·Ö±ðµ±QµãÔÚFµãÉÏ·½Ê±£¬µ±QµãÔÚÏ߶ÎFNÉÏʱ£¬µ±QµãÔÚNµãÏ·½Ê±È¥·ÖÎö¼´¿ÉÇóµÃ´ð°¸£®
½â´ð£º½â£º£¨1£©Èçͼ£¬Á¬½ÓPE¡¢PB£¬ÉèPC=n£¬
ÓÉÕý·½ÐÎCDEFµÄÃæ»ýΪ4£¬¿ÉµÃCD=CF=2£¬
¸ù¾ÝÔ²ºÍÕý·½ÐεĶԳÆÐÔÖª£¬OP=PC=n£¬
ÓÉPB=PE£¬¸ù¾Ý¹´¹É¶¨Àí£¬µÃ
PB2=BC2+PC2=4n2+n2=5n2£¬
PE2=PF2+EF2=£¨n+2£©2+4£¬¼´5n2=£¨n+2£©2+4
½âµÃn1=2»òn2=-1£¨ÉáÈ¥£©£®
¡àBC=OC=4£¬
¹ÊµãBµÄ×ø±êΪ£¨4£¬4£©£»
£¨2£©ÓÉ£¨1£©A£¨0£¬4£©£¬C£¨4£¬0£©£¬
¡ßÅ×ÎïÏßy=
x2+bx+c¾¹ýA¡¢CÁ½µã£¬
¡à
½âµÃ
£¬£®
¡àÅ×ÎïÏߵĽâÎöʽΪy=
x2-
x+4£»
£¨3£©¢ÙÈçͼ£¬ÑÓ³¤AB½»Å×ÎïÏßÓÚµãA¡ä£¬Á¬½ÓCA¡ä½»¶Ô³ÆÖáx=6ÓÚµãQ£¬Á¬½ÓAQ£¬ÔòÓÐAQ=A¡äQ£®¡÷ACQÖܳ¤µÄ×îСֵΪAC+A¡äCµÄ³¤£®
ÀûÓù´¹É¶¨Àí£¬ÔÚRt¡÷AOCÖУ¬AC=
=4
£¬
ÔÚRt¡÷A¡äBCÖУ¬A¡äC=
=4
£¬
¼´¡÷ACQÖܳ¤µÄ×îСֵΪ4
+4
£»
¢ÚÖ±ÏßACµÄ½âÎöʽΪx+y-4=0£¬µ±x=6ʱ£¬y=-2£¬ÓÉÓÚµãQÓëN²»Öغϣ¬
¡àt¡Ù-2£¬
µ±t£¾-2ʱ£¬
QµãÔÚFµãÉÏ·½Ê±£¬S=SÌÝÐÎACFK-S¡÷AKQ-S¡÷CFQ=
¡Á£¨6+2£©¡Á2-
¡Á£¨4-t£©¡Á6-
¡Át¡Á2=2t-4£¬
ͬÀí£¬µ±t£¼-2ʱ¿ÉµÃ£ºµ±QµãÔÚÏ߶ÎFNÉÏʱ£¬S=-2t-4£®
ÓÉÕý·½ÐÎCDEFµÄÃæ»ýΪ4£¬¿ÉµÃCD=CF=2£¬
¸ù¾ÝÔ²ºÍÕý·½ÐεĶԳÆÐÔÖª£¬OP=PC=n£¬
ÓÉPB=PE£¬¸ù¾Ý¹´¹É¶¨Àí£¬µÃ
PB2=BC2+PC2=4n2+n2=5n2£¬
PE2=PF2+EF2=£¨n+2£©2+4£¬¼´5n2=£¨n+2£©2+4
½âµÃn1=2»òn2=-1£¨ÉáÈ¥£©£®
¡àBC=OC=4£¬
¹ÊµãBµÄ×ø±êΪ£¨4£¬4£©£»
£¨2£©ÓÉ£¨1£©A£¨0£¬4£©£¬C£¨4£¬0£©£¬
¡ßÅ×ÎïÏßy=
1 |
8 |
¡à
|
½âµÃ
|
¡àÅ×ÎïÏߵĽâÎöʽΪy=
1 |
8 |
3 |
2 |
£¨3£©¢ÙÈçͼ£¬ÑÓ³¤AB½»Å×ÎïÏßÓÚµãA¡ä£¬Á¬½ÓCA¡ä½»¶Ô³ÆÖáx=6ÓÚµãQ£¬Á¬½ÓAQ£¬ÔòÓÐAQ=A¡äQ£®¡÷ACQÖܳ¤µÄ×îСֵΪAC+A¡äCµÄ³¤£®
ÀûÓù´¹É¶¨Àí£¬ÔÚRt¡÷AOCÖУ¬AC=
AO2+OC2 |
2 |
ÔÚRt¡÷A¡äBCÖУ¬A¡äC=
A¡äB2+BC2 |
5 |
¼´¡÷ACQÖܳ¤µÄ×îСֵΪ4
2 |
5 |
¢ÚÖ±ÏßACµÄ½âÎöʽΪx+y-4=0£¬µ±x=6ʱ£¬y=-2£¬ÓÉÓÚµãQÓëN²»Öغϣ¬
¡àt¡Ù-2£¬
µ±t£¾-2ʱ£¬
QµãÔÚFµãÉÏ·½Ê±£¬S=SÌÝÐÎACFK-S¡÷AKQ-S¡÷CFQ=
1 |
2 |
1 |
2 |
1 |
2 |
ͬÀí£¬µ±t£¼-2ʱ¿ÉµÃ£ºµ±QµãÔÚÏ߶ÎFNÉÏʱ£¬S=-2t-4£®
µãÆÀ£º´ËÌ⿼²éÁË´ý¶¨ÏµÊý·¨Çó¶þ´Îº¯ÊýµÄ½âÎöʽ£¬Ô²µÄÐÔÖÊ£¬ÏàËÆÈý½ÇÐεÄÅж¨ÓëÐÔÖÊÒÔ¼°¹´¹É¶¨ÀíµÈ֪ʶ£®´ËÌâ×ÛºÏÐÔºÜÇ¿£¬ÌâÄ¿ÄѶȽϴ󣬽âÌâµÄ¹Ø¼üÊÇ·½³Ì˼Ïë¡¢·ÖÀàÌÖÂÛÓëÊýÐνáºÏ˼ÏëµÄÓ¦Óã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿