题目内容
【题目】如图,反比例函数y=(k>0)在第一象限的图象经过A、C两点,点C是AB的中点,若△OAB的面积为6,则k的值为_____.
【答案】4
【解析】分别过点A、点C作OB的垂线,垂足分别为点M、点N,根据C是AB的中点得到CN为△AMB的中位线,然后设MN=NB=a,CN=b,AM=2b,根据OMAM=ONCN,得到OM=a,最后根据面积=3a2b÷2=3ab=6求得ab=2从而求得k=a2b=2ab=4.
分别过点A、点C作OB的垂线,垂足分别为点M、点N,如图,
∵点C为AB的中点,CN∥AM,
∴CN为△AMB的中位线,
∴MN=NB=a,CN=b,AM=2b,
又∵OMAM=ONCN
∴OM=a
∴这样面积=3a2b÷2=3ab=6,
∴ab=2,
∴k=a2b=2ab=4,
故答案为:4
【题目】在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:
分 组 | 频数 | 频率 |
第一组(0≤x<15) | 3 | 0.15 |
第二组(15≤x<30) | 6 | a |
第三组(30≤x<45) | 7 | 0.35 |
第四组(45≤x<60) | b | 0.20 |
(1)频数分布表中a=_____,b=_____,并将统计图补充完整;
(2)如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?
(3)已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?
【题目】目前节能灯在城市已基本普及,为满足消费者需求,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、标价如下表:
进价(元/只) | 标价(元/只) | |
甲型 | 25 | 40 |
乙型 | 45 | 60 |
(1)如何进货才能保证进货款恰好为46000元?
(2)由于恰逢五一,商场决定搞促销活动,乙型节能灯打八五折,请你运用所学的知识预算一下甲型节能灯要打几折才能使这批灯售完后获得9200元的利润(不考虑其它因素)?