题目内容
【题目】如图,水平放置的圆柱形排水管的截面为⊙O,有水部分弓形的高为2,弦AB=4 ,求⊙O的半径.
【答案】解:过点O作OC⊥AB于点C,交 于点D,连接OB,
设⊙O的半径为r,则OC=r﹣2,
∵OC⊥AB,
∴BC= AB= ×4 =2 ,
在Rt△BOC中,
∵OC2+BC2=OB2,即(r﹣2)2+(2 )2=r2,
解得r=4.
【解析】此类问题通过添加辅助线过点O作OC⊥AB于点C,交弧AB于点D,连接OB,根据垂径定理求出BC的长,再用含r的代数式表示出OC的长,然后根据勾股定理建立方程求解即可。
【考点精析】通过灵活运用勾股定理的概念和垂径定理,掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧即可以解答此题.
练习册系列答案
相关题目
【题目】随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按x元/公里计算,耗时费按y元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与打车时间如表:
时间(分钟) | 里程数(公里) | 车费(元) | |
小明 | 8 | 8 | 12 |
小刚 | 12 | 10 | 16 |
(1)求x,y的值;
(2)如果小华也用该打车方式,打车行驶了11公里,用了14分钟,那么小华的打车总费用为多少?