题目内容
如图1,在平面直角坐标系中,O为坐标原点,点A的坐标为(-8,0),直线BC经过点B(-8,6),C(0,6),将四边形OABC绕点O按顺时针方向旋转α度得到四边形OA′B′C′,此时OA′、B′C′分别与直线BC相交于P、Q.(1)四边形OA′B′C′的形状是______,当α=90°时,
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110553201672696/SYS201312111105532016726029_ST/0.png)
(2)①如图2,当四边形OA′B′C′的顶点B′落在y轴正半轴上时,求
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110553201672696/SYS201312111105532016726029_ST/1.png)
②如图3,当四边形OA′B′C′的顶点B′落在直线BC上时,求△OPB′的面积;
(3)在四边形OABC旋转过程中,当0°<α≤180°时,是否存在这样的点P和点Q,使BP=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110553201672696/SYS201312111105532016726029_ST/2.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110553201672696/SYS201312111105532016726029_ST/images3.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110553201672696/SYS201312111105532016726029_ST/images4.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110553201672696/SYS201312111105532016726029_ST/images5.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110553201672696/SYS201312111105532016726029_ST/images6.png)
【答案】分析:(1)根据有一个角是直角的平行四边形进行判断当α=90°时,就是长与宽的比;
(2)①利用相似三角形求得CP的比,就可求得BP,PQ的值;
②根据勾股定理求得PB′的长,再根据三角形的面积公式进行计算.
(3)构造全等三角形和直角三角形,运用勾股定理求得PC的长,进一步求得坐标.
解答:
解:(1)图1,四边形OA′B′C′的形状是矩形;根据题意即是矩形的长与宽的比,即
.
(2)①图2∵∠POC=∠B′OA′,∠PCO=∠OA′B′=90°,
∴△COP∽△A′OB′.
∴
,即
,
∴CP=
,BP=BC-CP=
.
同理△B′CQ∽△B′C′O,![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110553201672696/SYS201312111105532016726029_DA/images6.png)
∴
=
,即
,
∴CQ=3,BQ=BC+CQ=11.
∴
=
=
;
②图3,在△OCP和△B′A′P中,
,
∴△OCP≌△B′A′P(AAS).![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110553201672696/SYS201312111105532016726029_DA/images14.png)
∴OP=B′P.设B′P=x,
在Rt△OCP中,(8-x)2+62=x2,
解得x=
.
∴S△OPB′=
.
(3)存在这样的点P和点Q,使BP=
BQ.
点P的坐标是P1(-9-
,6),P2(-
,6).
【对于第(3)题,我们提供如下详细解答,对学生无此要求】
过点Q画QH⊥OA′于H,连接OQ,则QH=OC′=OC,
∵S△POQ=
PQ•OC,S△POQ=
OP•QH,∴PQ=OP.
设BP=x,∵BP=
BQ,∴BQ=2x,
如图4,当点P在点B左侧时,
OP=PQ=BQ+BP=3x,
在Rt△PCO中,(8+x)2+62=(3x)2,
解得
,
(不符实际,舍去).
∴PC=BC+BP=9+
,![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110553201672696/SYS201312111105532016726029_DA/images26.png)
∴P1(-9-
,6).
如图5,当点P在点B右侧时,
∴OP=PQ=BQ-BP=x,PC=8-x.
在Rt△PCO中,(8-x)2+62=x2,解得x=
.
∴PC=BC-BP=
,
∴P2(-
,6),
综上可知,存在点P1(-9-
,6),P2(-
,6),使BP=
BQ.
点评:特别注意在旋转的过程中的对应线段相等,能够用一个未知数表示同一个直角三角形的未知边,根据勾股定理列方程求解.
(2)①利用相似三角形求得CP的比,就可求得BP,PQ的值;
②根据勾股定理求得PB′的长,再根据三角形的面积公式进行计算.
(3)构造全等三角形和直角三角形,运用勾股定理求得PC的长,进一步求得坐标.
解答:
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110553201672696/SYS201312111105532016726029_DA/images0.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110553201672696/SYS201312111105532016726029_DA/0.png)
(2)①图2∵∠POC=∠B′OA′,∠PCO=∠OA′B′=90°,
∴△COP∽△A′OB′.
∴
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110553201672696/SYS201312111105532016726029_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110553201672696/SYS201312111105532016726029_DA/2.png)
∴CP=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110553201672696/SYS201312111105532016726029_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110553201672696/SYS201312111105532016726029_DA/4.png)
同理△B′CQ∽△B′C′O,
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110553201672696/SYS201312111105532016726029_DA/images6.png)
∴
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110553201672696/SYS201312111105532016726029_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110553201672696/SYS201312111105532016726029_DA/6.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110553201672696/SYS201312111105532016726029_DA/7.png)
∴CQ=3,BQ=BC+CQ=11.
∴
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110553201672696/SYS201312111105532016726029_DA/8.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110553201672696/SYS201312111105532016726029_DA/9.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110553201672696/SYS201312111105532016726029_DA/10.png)
②图3,在△OCP和△B′A′P中,
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110553201672696/SYS201312111105532016726029_DA/11.png)
∴△OCP≌△B′A′P(AAS).
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110553201672696/SYS201312111105532016726029_DA/images14.png)
∴OP=B′P.设B′P=x,
在Rt△OCP中,(8-x)2+62=x2,
解得x=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110553201672696/SYS201312111105532016726029_DA/12.png)
∴S△OPB′=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110553201672696/SYS201312111105532016726029_DA/13.png)
(3)存在这样的点P和点Q,使BP=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110553201672696/SYS201312111105532016726029_DA/14.png)
点P的坐标是P1(-9-
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110553201672696/SYS201312111105532016726029_DA/15.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110553201672696/SYS201312111105532016726029_DA/16.png)
【对于第(3)题,我们提供如下详细解答,对学生无此要求】
过点Q画QH⊥OA′于H,连接OQ,则QH=OC′=OC,
∵S△POQ=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110553201672696/SYS201312111105532016726029_DA/17.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110553201672696/SYS201312111105532016726029_DA/18.png)
设BP=x,∵BP=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110553201672696/SYS201312111105532016726029_DA/19.png)
如图4,当点P在点B左侧时,
OP=PQ=BQ+BP=3x,
在Rt△PCO中,(8+x)2+62=(3x)2,
解得
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110553201672696/SYS201312111105532016726029_DA/20.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110553201672696/SYS201312111105532016726029_DA/21.png)
∴PC=BC+BP=9+
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110553201672696/SYS201312111105532016726029_DA/22.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110553201672696/SYS201312111105532016726029_DA/images26.png)
∴P1(-9-
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110553201672696/SYS201312111105532016726029_DA/23.png)
如图5,当点P在点B右侧时,
∴OP=PQ=BQ-BP=x,PC=8-x.
在Rt△PCO中,(8-x)2+62=x2,解得x=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110553201672696/SYS201312111105532016726029_DA/24.png)
∴PC=BC-BP=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110553201672696/SYS201312111105532016726029_DA/25.png)
∴P2(-
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110553201672696/SYS201312111105532016726029_DA/26.png)
综上可知,存在点P1(-9-
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110553201672696/SYS201312111105532016726029_DA/27.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110553201672696/SYS201312111105532016726029_DA/28.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110553201672696/SYS201312111105532016726029_DA/29.png)
点评:特别注意在旋转的过程中的对应线段相等,能够用一个未知数表示同一个直角三角形的未知边,根据勾股定理列方程求解.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目