题目内容
【题目】已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④BA+BC=2BF.其中正确的是( ).
A.①②③ B.①③④ C.①②④ D.①②③④
【答案】D.
【解析】
试题分析:①∵BD为△ABC的角平分线,∴∠ABD=∠CBD,又BD=BC,BE=BA,∴△ABD≌△EBC(SAS),所以①正确;②∵BD为△ABC的角平分线,BD=BC,BE=BA,∴∠BCD=∠BDC=∠BAE=∠BEA,∵△ABD≌△EBC,∴∠BCE=∠BDA,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,所以②正确;③∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,∴∠DCE=∠DAE,∴△ACE为等腰三角形,∴AE=EC,∵△ABD≌△EBC,∴AD=EC,∴AD=AE=EC.所以③正确;④过E作EG⊥BC于G点,∵E是BD上的点,∴EF=EG,又BE=BE,∴RT△BEG≌RT△BEF(HL),∴BG=BF,∵EF=EG,AE=CE,∴RT△CEG≌RT△AFE(HL),∴AF=CG,∴BA+BC=BF+FA+BG﹣CG=BF+BG=2BF.所以④正确.
故选:D.
练习册系列答案
相关题目