题目内容

【题目】如图,已知四边形ABCD中,∠ABC=90°,∠ADC=90°,AB=6,CD=4,BC的延长线与AD的延长线交于点E.

(1)若∠A=60°,求BC的长;

(2)若sinA=,求AD的长.

(注意:本题中的计算过程和结果均保留根号)

【答案】(1)6﹣8;(2)

【解析】

试题分析:(1)根据锐角三角函数求得BE和CE的长,根据BC=BE﹣CE即可求得BC的长;(2)根据题意求得AE和DE的长,由AD=AE﹣DE即可求得AD的长.

试题解析:(1)∵∠A=60°,∠ABE=90°,AB=6,tanA=

∴∠E=30°,BE=tan60°6=6

又∵∠CDE=90°,CD=4,sinE=,∠E=30°,

∴CE==8,

∴BC=BE﹣CE=6﹣8;

(2))∵∠ABE=90°,AB=6,sinA==

∴设BE=4x,则AE=5x,得AB=3x,

∴3x=6,得x=2,

∴BE=8,AE=10,

∴tanE====

解得,DE=

∴AD=AE﹣DE=10﹣=

即AD的长是

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网