题目内容

【题目】如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于点D,DE⊥AD且与AC的延长线交于点E.

(1)求证:DC=DE;
(2)若tan∠CAB= ,AB=3,求BD的长.

【答案】
(1)

证明:连接OC,

∵CD是⊙O的切线,

∴∠OCD=90°,

∴∠ACO+∠DCE=90°,

又∵ED⊥AD,∴∠EDA=90°,

∴∠EAD+∠E=90°,

∵OC=OA,∴∠ACO=∠EAD,

故∠DCE=∠E,

∴DC=DE,


(2)

解:设BD=x,则AD=AB+BD=3+x,OD=OB+BD=1.5+x,

在Rt△EAD中,

∵tan∠CAB= ,∴ED= AD= (3+x),

由(1)知,DC= (3+x),在Rt△OCD中,

OC2+CD2=DO2

则1.52+[ (3+x)]2=(1.5+x)2

解得:x1=﹣3(舍去),x2=1,

故BD=1.


【解析】(1)根据“等角对等边”,从证∠DCE=∠E出发,连接OC,根据两个直角,去找相关角的数量关系;
(2)根据勾股定理构造方程去解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网